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Abstract. The NASA Langley Research Center (LaRC) air-
borne High Spectral Resolution Lidar (HSRL) measures ver-
tical profiles of aerosol extinction, backscatter, and depo-
larization at both 532 nm and 1064 nm. In March of 2006
the HSRL participated in the Megacity Initiative: Local and
Global Research Observations (MILAGRO) campaign along
with several other suites of instruments deployed on both
aircraft and ground based platforms. This paper presents
high spatial and vertical resolution HSRL measurements of
aerosol extinction and optical depth from MILAGRO and
comparisons of those measurements with similar measure-
ments from other sensors and model predictions. HSRL mea-
surements coincident with airborne in situ aerosol scattering
and absorption measurements from two different instrument
suites on the C-130 and G-1 aircraft, airborne aerosol opti-
cal depth (AOD) and extinction measurements from an air-
borne tracking sunphotometer on the J-31 aircraft, and AOD
from a network of ground based Aerosol Robotic Network
(AERONET) sun photometers are presented as a validation
of the HSRL aerosol extinction and optical depth products.
Regarding the extinction validation, we find bias differences
between HSRL and these instruments to be less than 3%
(0.01 km−1) at 532 nm, the wavelength at which the HSRL
technique is employed. The rms differences at 532 nm were
less than 50% (0.015 km−1). To our knowledge this is the
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most comprehensive validation of the HSRL measurement
of aerosol extinction and optical depth to date. The observed
bias differences in ambient aerosol extinction between HSRL
and other measurements is within 15–20% at visible wave-
lengths, found by previous studies to be the differences ob-
served with current state-of-the-art instrumentation (Schmid
et al., 2006).

1 Introduction

Tropospheric aerosols influence the radiative budget of the
earth directly by scattering and absorbing solar radiation and
indirectly by serving as cloud condensation nuclei. When at-
tempting to account for direct and indirect aerosol radiative
effects on climate change, the Intergovernmental Panel on
Climate Change concluded that the uncertainties associated
with aerosol radiative forcings were larger than the uncertain-
ties associated with any of the other principal components of
radiative forcing impacting climate change (Solomon et al.,
2007). Aerosols have highly variable optical and physical
properties, relatively short atmospheric lifetimes, and large
spatial and temporal gradients; these factors complicate ef-
forts to account for their radiative forcing impacts in climate
models. Another key component directly affecting the radia-
tive forcing is the aerosol vertical profile (e.g. Haywood et
al., 1997). Indeed, Satheesh (2002) found that the aerosol
radiative forcing can differ significantly for identical aerosol
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layers located at different altitudes; it is therefore important
to have an accurate measurement of aerosol optical proper-
ties and vertical profile measurements. In addition to im-
proving estimates of aerosol radiative forcing, knowledge of
the vertical profile of aerosol is useful for augmenting the re-
trieval of aerosol properties from satellite-based passive ra-
diometric instruments, such as aerosol absorption (Torres et
al., 1998).

Lidar is an excellent technique to measure the vertical pro-
file of aerosol optical properties, offering both high vertical
resolution and high temporal resolution. Deployed from air-
craft, lidars are capable of mapping vertical distributions of
aerosol over large spatial regions in a relatively short amount
of time – something that is not possible with in-situ instru-
ments. Unlike the standard elastic backscatter technique, the
High Spectral Resolution Lidar (HSRL) technique accurately
measures the vertical profile of aerosol extinction without re-
liance on an external measurement of aerosol optical depth
(AOD) (McGill et al., 2003) or assumptions of the aerosol
extinction-to-backscatter ratio (Hair et al., 2001, 2008; Cat-
trall et al., 2005) to constrain the extinction retrieval.

In this paper we present the NASA Langley airborne
HSRL measurements from the MILAGRO field campaign
(Molina et al., 2009). This campaign was designed to study
the evolution of trace gases and aerosols above and down-
wind of Mexico City and employed ground-based instrumen-
tation in and around the urban megacity along with numer-
ous airborne instruments on seven aircraft. We begin by de-
scribing the HSRL data taken during this mission and their
usefulness for providing vertical and horizontal context for
ground and aircraft based in-situ measurements. The HSRL
extinction profile measurements are then validated for the
first time via comparisons with three state-of-the-art mea-
surement techniques on board three different aircraft, and the
HSRL aerosol optical depth measurements are validated via
comparison with airborne and ground based sunphotometer
measurements.

2 HSRL measurements during MILAGRO

The HSRL was deployed on the NASA LaRC B-200 King
Air aircraft, which operated from Veracruz, Mexico, and
measured profiles of aerosol extinction, backscatter, and de-
polarization from a nominal level flight altitude of 8.5 km
(28 kft) during the MILAGRO field campaign in March
2006. The HSRL collected approximately 55 h of data
over 17 science flights during MILAGRO, many of which
were coordinated with the NASA J-31 aircraft, the Depart-
ment of Energy (DOE) G-1 aircraft, and/or the National Sci-
ence Foundation/National Center for Atmospheric Research
(NSF/NCAR) C-130 aircraft. Numerous flights also in-
cluded segments designed to collect HSRL data over ground
based AERONET network sites and during satellite over-
passes of the Moderate Resolution Imaging Spectroradiome-

ter (MODIS) and the Multiangle Imaging SpectroRadiome-
ter (MISR) instruments. Coordinated flights with aircraft,
ground based sensors, and satellite overpasses are summa-
rized in Table 1. Figure 1 summarizes the B-200 flight tracks
and indicates the location of the AERONET stations (Mexico
City, Orizaba, Tamihua, T0, T1, T2, and Veracruz).

The NASA LaRC airborne HSRL system and algorithms
are described in detail by Hair et al. (2008) and are briefly
summarized here. The raw HSRL data are averaged over
100 shots (0.5 s at 200 Hz) temporally with 30 m vertical
bins, which are analyzed to determine aerosol extinction,
backscatter, and depolarization. The HSRL technique is
employed for the 532 nm wavelength, utilizing the iodine
vapor filter technique (Hair et al., 2001, 2008; Piironen
et al., 1994). The received 532 nm backscatter return is
split between three optical channels: (1) one measuring the
backscatter (predominantly aerosol) polarized orthogonally
to the transmitted polarization, (2) one measuring 10% of
the molecular and aerosol backscatter polarized parallel to
the transmitted polarization, and (3) one passing through an
iodine vapor cell which absorbs the central portion of the
backscatter spectrum, including all of the Mie backscatter,
and transmits only the Doppler/pressure-broadened molecu-
lar backscatter. This third channel, (the “molecular channel”)
is used to retrieve the profile of extinction and all three chan-
nels are used to retrieve profiles of aerosol backscatter coef-
ficient and aerosol depolarization. Equation (1) (correspond-
ing to Eq. (6) in Hair et al., 2008) describes the determina-
tion of the 532 nm aerosol extinction coefficient (αaer) from
the measured power in molecular channel, (Pi2), range (r),
overlap function (9), filter function describing the molecular
transmission through the iodine filter (F ), parallel molecular
backscatter (β ||

mol), and molecular extinction (αmol):

αaer = −
1

2

∂

∂r
ln

(
Pi2 · r2

9 · F · β
||

mol

)
− αmol (1)

In this expression the molecular extinction and backscatter
are calculated from modeled density profiles and the calcu-
lation is only performed where the overlap function is unity
(approximately 2.5 km from the aircraft). Hair et al. (2008)
describe the potential errors introduced in any of these quan-
tities and found the 532 nm extinction systematic error to be
less than 0.01 km−1 in typical aerosol loading. The aerosol
extinction is calculated at 300 m vertical and 60 s tempo-
ral resolution (translating to∼6 km horizontal resolution us-
ing nominal aircraft speed). The aerosol backscatter coeffi-
cient is derived from the measured attenuated total backscat-
ter signal (molecular plus aerosol), the measured attenuated
molecular backscatter signal, and molecular backscatter co-
efficient estimated from a model-derived air density pro-
file. The aerosol backscatter coefficients are averaged over
10 s (∼1 km at nominal aircraft speed) in time and 30 m in
altitude. The 532 nm extinction-to-backscatter ratio (here-
after referred to as “lidar ratio”) is then calculated from the
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Table 1. × indicates comparison/validation/coordination: MODIS and MISR coincidences are indicated as over land (L) or water (W).
AERONET coordinated stations are listed: TA = Tamihua, MC = Mexico City, O = Orizaba, and T0, T1, T2.

Date
Flight #

Begin time End time Coincident measurements
Comments(MM/DD) (UTC) (UTC)

G-1 C-130 J-31 AERONET MODIS MODIS MISR
(Aqua) (Terra)

03/01 1 15:38 18:10 Transit flights from NASA
LaRC to Houston

2 19:21 21:29
03/02 1 15:35 17:40 Transit from Houston to Ve-

racruz
03/03 1 18:12 21:26 × T0,T1 L Scout for C-130, 4 March

2006 flight
03/06 1 15:53 18:41 × × T0, T1, MC L L
03/07 1 16:56 20:45 × T0, T1, MC, O L Raster Pattern over Mexico

City
03/08 1 18:54 21:18 W Intended J-31 coordination
03/09 1 14:45 18:10 × T0, T1, MC L Raster pattern over Mexico

City to look at AM/PM out-
flow

2 19:57 23:00 × T0, T1, MC L
03/10 1 15:05 17:52 × × W
03/12 1 16:05 19:08 × × T0,T1,T2, TA, MC, O
03/13 1 16:18 20:01 T0,T1, MC L L Flight intended to scout

aerosols for the G-1
03/15 1 15:41 19:05 × × T0,T1, MC L L
03/25 1 21:48 23:13 Transit back from Toluca to

Veracruz
03/26 1 17:00 20:25 Transmitter troubleshooting

on HSRL
03/27 1 16:45 20:25 × T0,T1,T2 L
03/28 1 13:57 17:43 × W W
03/29 1 15:49 19:36 × T0,T1, O L L

2 21:04 00:20 × T1, MC, O
03/31 1 16:19 18:06 × Transit flights back to

NASA LaRC
2 19:06 22:26

ratio of the aerosol extinction and backscatter and is at the
coarser resolution of the extinction product (∼6 km horizon-
tal, 300 m vertical resolution). The aerosol depolarization ra-
tio, defined as the ratio between the aerosol backscatter polar-
ized perpendicular and parallel to the transmitted laser beam,
is computed from the measured total (molecular plus aerosol)
depolarization ratio and the retrieved aerosol backscatter pro-
file. This product is produced at the same resolution as the
aerosol backscatter product (∼1 km horizontal, 30 m vertical
resolution).

At 1064 nm, the standard backscatter lidar technique (Fer-
nald, 1984) is employed to retrieve aerosol extinction and
backscatter (∼1 km horizontal, 30 m vertical resolution) by
assuming a lidar ratio between 30 and 40 sr, determined from
a cluster retrieval similar to Cattrall et al. (2005). Prior to im-
plementing this retrieval, the 1064 nm channel is calibrated
to an estimate of total backscatter in that part of the pro-
file that is both near the aircraft and exhibits a local mini-
mum in the 532 nm aerosol backscatter profile. At the cali-

bration altitude, the aerosol component of the total 1064 nm
backscatter is estimated from the 532 nm aerosol backscatter
determined via the HSRL technique by assuming the ratio of
aerosol backscatter at 532 nm to that at 1064 m is 2.5 (Chu-
damani et al., 1996). The estimate of the molecular com-
ponent of backscatter at the calibration altitude is calculated
from the model-derived air density at the calibration altitude.
The Fernald retrieval is then implemented to calculate the
1064 nm aerosol backscatter and extinction above and below
the calibration altitude; however, unlike the 532 nm products,
the 1064 nm aerosol backscatter and extinction are not inde-
pendent as they both depend upon an assumed lidar ratio in
the retrieval. Like the 532 nm channel, the 1064 nm channel
also independently measures the backscatter polarized par-
allel and perpendicular to that of the transmitted beam. The
1064 nm aerosol depolarization ratio is calculated at the same
resolution as the aerosol backscatter product (∼1 km hori-
zontal, 30 m vertical resolution).
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Figure 1:  Flight tracks of the NASA LaRC B-200 during MILAGRO (white).  The yellow 

diamonds and labels indicate AERONET stations 

 

 

Fig. 1. Flight tracks of the NASA LaRC B-200 during MILAGRO
(white). The yellow diamonds and labels indicate AERONET sta-
tions.

Random error estimates based on shot noise are provided
for all HSRL products using a noise scale factor as detailed
in Liu et al. (2006).

The data products available from the measurements can
be analyzed in terms of extensive and intensive observables
to gain insight on aerosol loading, aerosol radiative effects,
and aerosol type. Extensive observables depend upon both
aerosol loading and optical properties. Intensive observ-
ables are independent of aerosol loading and depend only
on optical properties as determined by aerosol composition,
size, and shape. The extensive profile products are aerosol
backscatter at the two wavelengths and aerosol extinction at
532 nm. The intensive profile products are the aerosol depo-
larization ratios at the two wavelengths, the ratio of aerosol
backscatter at the two wavelengths, and the lidar ratio (i.e.,
the extinction-to-backscatter ratio) at 532 nm. The aerosol
depolarization ratio provides an indication of aerosol shape:
spherical particles exhibit zero depolarization whereas ir-
regularly shaped particles (e.g., dust) significantly depolar-
ize the backscattered signal. Because the depolarization ra-
tio is measured at both wavelengths, the wavelength depen-
dence of the aerosol depolarization ratios can also be used
to make additional inferences on aerosol morphology in the
profile (e.g., the ratio of spherical-to-nonspherical backscat-
ter (Sugimoto and Lee, 2006)). The wavelength dependence
of the aerosol backscatter (WVD) is calculated in terms of
the Angstrom exponent of the aerosol backscatter coefficient,
βa , and, while also influenced by aerosol composition, pro-
vides information on particle size: smaller particles gener-
ally exhibit a larger WVD than larger particles. The 532 nm
lidar ratio is influenced by aerosol composition, morphology,
and size and provides information useful in inferring aerosol

type: e.g., the lidar ratio for more absorbing aerosols is gen-
erally larger than that for less absorbing aerosols. A more
detailed description of the retrievals of the extensive and in-
tensive data products is provided in Hair et al. (2008).

Column and layer products can be computed from the
profile data, the most relevant of which for this paper is
the aerosol optical depth. The 532 nm differential, or layer,
aerosol optical depth is a profile of cumulative AOD (calcu-
lated from the two-way transmittance in the molecular chan-
nel) to each altitude bin, referenced to 2.5 km below the air-
craft (300 m resolution). At 150 m above the ground a poly-
nomial fit extends the differential AOD to the ground. The
column-integrated AOD is the largest layer available in the
differential AOD, extending from the ground up to 2.5 km
below the aircraft.

Figure 2 shows examples of HSRL 532 nm aerosol
backscatter and aerosol optical depth products from the sec-
ond B-200 flight on 9 March 2006 (afternoon flight, 19.95–
23.00 UTC). This flight was an east-west raster pattern de-
signed to look at the Mexico City basin region and the aerosol
outflow to the north of the city and was coordinated with
the G-1 aircraft. In these plots the column AOD and aerosol
backscatter both show significant aerosol loading to the north
of Mexico City. AODs observed in this flight were higher by
∼0.2 than in the morning flight (not shown) in Mexico City
and the region north of the city. A summary of the HSRL data
products for one coordinated flight section, from 21.52 UTC
to 21.85 UTC (note all times referenced in this paper are in
fractional hour), denoted by the black arrow in Fig. 2a and
the black arrow Fig. 2b, is presented in Fig. 3. Extensive ob-
servables are shown in Fig. 3a, b: 532 nm aerosol backscatter
and extinction. Intensive observables are shown in Fig. 3c–f:
the 532 nm aerosol depolarization ratio, the ratio of aerosol
depolarization ratios (1064 nm/532 nm) the 532 nm aerosol
lidar ratio, and the aerosol backscatter wavelength depen-
dence. The thin white lines in these plots are the digital el-
evation map (DEM) ground altitude above mean sea level.
The thick white line in Fig. 3a is the G-1 flight track, which
will be discussed below.

Figure 3 demonstrates the measurements that HSRL can
make of a highly variable aerosol mass in a relatively short
time, yet over a large spatial region with fine vertical resolu-
tion: approximately 120 km over 20 min along this particular
leg. The variability of aerosol intensive properties displayed
indicate variations in aerosol optical and physical character-
istics and signify that there are at least two separate aerosol
types observed in this scene. The observed aerosol lidar ra-
tios between 21.625 and 21.75 UTC are high (40–50 sr) from
the ground up to 6 km, which coupled with aerosol 532 nm
depolarization ratios around∼0.1 and higher aerosol wave-
length dependence in the same region (WVD<0.5) indicates
that the aerosols in this region were likely dominated by an
urban aerosol air mass but contained a significant amount of
dust particles. To the east of this region, from 21.75 UTC
to 21.9 UTC, the lidar ratios are around 30–40 sr, with WVD
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Figure 2:  Flight track maps of 532 nm aerosol backscatter coefficient (only every other leg is 

plotted for clarity) (a) and 532 nm aerosol optical depth (b) on March 9, 2006 over the Mexico 

City basin.  The black arrow in each (a) and (b) indicates the leg that is coordinated with the G-1.  

Mexico City is marked with a magenta square in both (a) and (b), and the times shown in (b) are 

in fractional hour (UTC).

Fig. 2. Flight track maps of 532 nm aerosol backscatter coefficient (only every other leg is plotted for clarity)(a) and 532 nm aerosol optical
depth(b) on 9 March 2006 over the Mexico City basin. The black arrow in each (a) and (b) indicates the leg that is coordinated with the G-1.
Mexico City is marked with a magenta square in both (a) and (b), and the times shown in (b) are in fractional hour (UTC).

∼0 and depolarization∼0.2, indicative of dust dominated
aerosol mass. It should be noted that the aerosol depolar-
ization was elevated (δ>0.05) for many of the MILAGRO
measurements, indicating a nonspherical (dust) component
in most of the measurements.

The DOE G-1 flew a stacked pattern coordinated for close
temporal coincidence with the B200 along this flight leg,
thereby providing in situ aerosol and trace gas measurements
along three level leg altitudes in the lidar curtain. The G-
1 started along this leg at 21.8 UTC (∼5 km) on the eastern
portion of the area depicted in Fig. 3 and transected the re-
gion where HSRL measured high backscatter three times be-
fore ending the coincident pattern at 22.6 UTC (∼3 km), in-
dicated by the thick white line in Fig. 3a.

Figure 4 contains time-height curtain plots showing a sub-
set of the parameters measured by the in-situ sensors onboard
the G-1. The color coded lines representing the G-1 measure-
ments are thickened for plotting purposes and hence appear
to extend 500 m vertically whereas the actual sampling alti-
tude of the G-1 was constant to within 50 m along any given
level altitude segment. The G-1 instruments measured total
aerosol scattering with a three wavelength TSI model 3563
nephelometer (450, 550, and 700 nm) and aerosol absorp-
tion with a Particle Soot Absorbance Photometer (PSAP) at
three wavelengths (461.1, 522.7, and 648.3 nm). The G-1
aerosol scattering is plotted in Fig. 4a, and the extinction
and absorption were used in conjunction (Fig. 4b, c) to pro-
duce aerosol extinction and single scattering albedo (SSA) at

www.atmos-chem-phys.net/9/4811/2009/ Atmos. Chem. Phys., 9, 4811–4826, 2009
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Figure 3:  Time-height plots of 532 nm aerosol backscatter (a), 532 nm aerosol extinction (b), 532 nm lidar ratio (c), aerosol 

depolarization ratio at 532 nm (d), ratio of the 1064 nm depolarization ratio to the 532 nm depolarization ratio (e), and the aerosol 

backscatter wavelength dependence (f).  The thick white line in aerosol backscatter indicates the altitude that the G-1 aircraft flew 

making in situ measurements along this flight track.  Note that the top axis is the HSRL time and only the G 1 longitude is 

represented here; the G 1 flew this flight track within an hour of the HSRL times (21.8 UTC to 22.6 UTC). 

Fig. 3. Time height plots of 532 nm aerosol backscatter(a), 532 nm aerosol extinction(b), 532 nm lidar ratio(c), aerosol depolarization
ratio at 532 nm(d), ratio of the 1064 nm depolarization ratio to the 532 nm depolarization ratio(e), and the aerosol backscatter wavelength
dependence(f). The thick white line in aerosol backscatter indicates the altitude that the G-1 aircraft flew making in situ measurements along
this flight track. Note that the top axis is the HSRL time and only the G-1 longitude is represented here; the G-1 flew this flight track within
an hour of the HSRL times (21.8 UTC to 22.6 UTC).

532 nm (scattering and absorption were scaled with wave-
length and an Angstrom coefficient of unity). A Passive
Cavity Aerosol Spectrometer (PCASP) X100 with SPP 200
electronics measured the total number density of aerosols
(30 bins, 0.1 to 3µm) shown in Fig. 4d and the ozone con-
centration was measured by a UV-Absorbance Ozone An-
alyzer, TEI Model 49–100 (Fig. 4e), while relative humid-
ity (Fig. 4f), is calculated from the ambient and dew point
temperatures measured with a Rosemount 102E temperature
probe and a General Eastern 1011B hygrometer. A quantita-
tive discussion of the G-1 extinctions is provided in Sect. 3.3.

Inside of the region located in between−98.6 E and
−99.0 E longitude there are elevated aerosol counts in the
PCASP, especially at higher altitudes, as well as elevated
scattering, extinction, ozone, and relative humidity. The SSA
is ∼0.88 in the lower altitude legs in the region of high
aerosol extinction and∼0.95 in the higher altitude leg in
the same region. Taken together, these measurements also
indicate an aerosol source largely of urban origin, agreeing
with the inference on the dominant aerosol mass made via

the HSRL observations. Figures 3 and 4 illustrate the com-
plementary nature of the HSRL remotely sensed and airborne
in situ observations. The high spatial and temporal resolution
HSRL curtains add context for interpretation of the G-1 data
and enable extrapolation of the inferences made from the G-
1 measurements to other altitudes and locations. (Another
example of the use of the HSRL to provide spatial and tem-
poral context to in-situ measurements on the C-130 aircraft
is presented in Sect. 3.1.) On the other hand, the detailed
aerosol composition, size, morphology, and optical property
measurements from the in-situ instruments on the G-1 (and
other platforms) are useful for assessing the inferences of
aerosol type made from the HSRL data. This assessment
of HSRL typing skill enables identification of aerosol type
to be made with higher confidence for the entire HSRL data
set, including vast regions where there are no accompanying
in situ observations.

Atmos. Chem. Phys., 9, 4811–4826, 2009 www.atmos-chem-phys.net/9/4811/2009/
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Figure 4:  A subset of measurements from the G-1 aircraft including aerosol total scattering (a), 532 nm aerosol extinction (b), 

532 nm single scattering albedo (c), aerosol number density (0.1-3 um) (d), ozone mixing ratio (e), and relative humidity (f).   

 

 

Fig. 4. A subset of measurements from the G-1 aircraft including aerosol total scattering(a), 532 nm aerosol extinction(b), 532 nm single
scattering albedo(c), aerosol number density (0.1–3µm) (d), ozone mixing ratio(e), and relative humidity(f).

3 HSRL extinction and AOD comparisons

The coordinated measurement efforts in MILAGRO pro-
vided the opportunity to assess the HSRL aerosol extinction
and optical thickness profiles via comparison with profiles
derived from two other airborne instruments employing dif-
ferent measurement techniques: (1) the 14-channel NASA
Ames Airborne Tracking Sunphotometer AATS-14 on the
J-31 aircraft (Russell et al., 2007; Livingston et al., 2009)
and (2) the in situ nephelometer measurements of aerosol
scattering and PSAP measurements of aerosol absorption
from the Hawaii Group for Environmental Aerosol Research
(HiGEAR) on the NSF/NCAR C-130 aircraft (McNaughton
et al., 2009). Comparisons of temporally and spatially co-
incident aerosol extinction measurements derived from the
nephelometer and PSAP instruments are also shown to val-
idate the HSRL extinction. Aerosol optical depths derived
from the HSRL measurements are also compared with the
14-channel NASA AATS-14 and the AERONET ground–
based sun photometer AOD measurements.

The linear regressions presented here were preformed us-
ing the linear least squares bisector technique (Sprent and
Dolby, 1980). This follows the example of Schmid et
al. (2006) and accounts for the fact that neither dataset is the
“truth” and should therefore be treated as the independent
variable. Similarly, the bias and rms differences reported
here were calculated following Schmid et al. (2006).

All of the vertical profiles and related scatterplots pre-
sented here have interpolated the profiles to a common
50 m vertical grid, determined from the AATS-14 retrieval.
This altitude grid is slightly oversampled for the HSRL and

AATS-14 extinction measurements, and in addition to the po-
tential for vertical lofting of air masses, we cannot consider
adjacent points unique. This should have little effect on the
bias and regression parameters reported here, however care
should be taken in interpreting the profile data shown here.

3.1 HiGEAR

The HiGEAR aerosol scattering measurements are mea-
sured with a TSI 3563 three-wavelength (450, 550, 700 nm)
nephelometer and the HiGEAR aerosol absorption measure-
ments were determined from a three-wavelength (470, 530,
660 nm) Radiance Research particle soot absorption pho-
tometer. The aerosol scattering was scaled to 530 nm based
on the wavelength dependence of the scattering measured at
450 nm and 550 nm. The aerosol sample was dried through
ram heating and cabin temperature higher than ambient, with
the dry aerosol scattering measured by the nephelometer is
corrected to ambient relative humidity using the approxima-
tion (Kasten, 1969) given by Eq. (3):

σs = σs,d

(
1 − RH

1 − RHd

)−γ

(2)

whereσs is the light scattering coefficient at relative humidity
RH (value between 0 and 1) andσs,d is the light scattering
coefficient at dry relative humidity, RHd . For this analysis
the empirical fitting parameter,γ , was determined from an
average value of the f(RH) curves obtained with a humid-
ified nephelometer suite on the DC-8 for MILAGRO. Mc-
Naughton et al. (2009) found thef (RH) curves measured in
the flight configuration to be well calibrated with theoretical
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curves for both ammoniam sulfate and sea salt within 25%.
On average for MILAGRO the parameterγ from this instru-
mentation was found to be 0.49 above 2 km and 0.61 below
2 km. Additionally, the HiGEAR absorption was corrected
for the interference of scattering and bias in manufacturer’s
calibration (Virkkula et al., 2005). Aerosol extinction is then
the sum of the scattering and absorption at 530 nm and scaled
to 532 nm with an assumed Angstrom coefficient of unity.

Closely coordinated maneuvers between the B-200 and C-
130 were conducted on three dates. These maneuvers con-
sisted of the B-200 with the HSRL flying “racetrack” pat-
terns over ascending/descending spirals of the C-130 with
the HiGEAR instrumentation and yielded a total of four
HiGEAR vertical profiles useful for intercomparison with the
HSRL data. Because the HiGEAR extinction profiles were
acquired at a higher resolution than HSRL the HiGEAR ex-
tinction profiles were smoothed with a 300 m moving aver-
age to be consistent with the filter applied to the HSRL ex-
tinction profile.

These comparison profiles are all coincident in time to
within 5 min, making insignificant any differences due to
temporal variation. However horizontal aerosol gradients
do lead to differences in the HSRL and HiGEAR extinc-
tion profiles simply due to differences in horizontal sam-
pling, i.e., the HiGEAR data being acquired through ascend-
ing/descending spirals of the C-130 and the HSRL data be-
ing acquired in a B-200 “race-track” pattern over the C-130
spirals. Figure 5a shows an example of this effect with a co-
incident spiral of the C-130 and corresponding track of the
B-200 on 29 March 2006. The 532 nm column AOD mea-
sured by HSRL is also plotted on the HSRL track and clearly
illustrates that the AOD on the southern leg is higher than the
northern leg by∼0.1. The aerosol scattering ratio (the ratio
of aerosol backscatter to molecular backscatter) curtain plot
shows this north-south difference as well, as large changes in
the scattering within the southern leg between 1 km and 2 km.
The effect can also be seen in the line plot comparison of ex-
tinction, where the HSRL profiles are shown for an average
of just the northern flight legs and again over all flight legs
in Fig. 5c. The largest differences in extinction are seen be-
tween 1.4 km and 2.0 km where the C-130 was on the north-
ern half of its spiral from 1.4 km to 1.8 km, thereby missing
the thick aerosol mass 11 km to the south seen in the HSRL
data. Using only the northern legs yields some discrepancies
near 1100 m as the C-130 was at the southern track at that
altitude. All other coincident spirals were investigated for
sharp spatial gradients that could lead to potentially different
air masses reported in the subsequent comparisons. Devia-
tions in HSRL AOD were generally less than 0.025 over the
spiral region in all other cases.

Coincident aerosol extinction profiles from HSRL and
HiGEAR are plotted in Fig. 6. Overall, the comparisons
show the HSRL profiles of aerosol extinction to be generally
in excellent agreement with the extinction profiles derived
from HiGEAR. On 10 March 2006 the relative humidity was

below 50%, leading to small humidification factor correc-
tions, which is also where the agreement is best (Fig. 6a).
However on 28 March and 29 March 2006 (Fig. 6b, c, and
d) the relative humidity was greater than 75% in the bound-
ary layer and there are more disparities in the HSRL and
HiGEAR aerosol extinction comparisons, potentially due to
errors introduced in the humidification correction, which cor-
responds to a 30% to 45% enhancement of aerosol scattering
for a relative humidity of 60%.

All coincident HSRL and HiGEAR extinction measure-
ments are summarized in Fig. 7. The HSRL and HiGEAR ex-
tinctions are in good agreement over a wide range of aerosol
extinctions, from∼0 km−1 to 0.2 km−1, with a bias differ-
ence of−0.0011 km−1 (−2.6%) (HSRL lower) and good
correlation. Results from the regression are shown in Table 2.
As observed above, the HiGEAR data are measured in a dry
environment and corrected for relative humidity. In order to
minimize the impact of relative humidity the regression was
performed on only the data measured below 65% relative hu-
midity, which were found to have a bias of−0.0044 km−1

(−1.5%) (HSRL lower). The regression results for the low
(<65%) RH points only are summarized in Table 3. Inclu-
sion of relative humidity between 65% and 100% in the re-
gression yields a bias difference ranging from−0.0011 km−1

to 0.0006 km−1 (−2.6% to 1.6%) with good correlation and
similar slopes remaining consistent throughout the range of
relative humidity included. The changes observed by limit-
ing the relative humidity are small and leads us to conclude
that the bias is nearly zero in this case and the HiGEAR hu-
midity correction is adequate.

3.2 AATS-14

The HSRL and AATS-14 instruments sampled the same re-
gion on a total of five coincident flights; however, cloud
interference reduced the number of useful comparisons to
three cases corresponding to three J-31 vertical profiles. The
AATS AODs obtained during these profiles were scaled with
wavelength to 532 nm using an Angstrom coefficient derived
from the AATS 519 nm and 604 nm AODs. A correspond-
ing aerosol extinction profile was calculated from each AATS
532-nm AOD profile using a multi-step procedure based on
that described in Schmid et al. (2003). This approach con-
sists of binning the AODs with altitude, fitting the binned
AOD values with a smoothing spline function, and then nu-
merically differentiating the spline fit. For the MILAGRO
AATS measurements, each reported extinction profile rep-
resents the mean of a series of retrieval runs in which the
vertical bin width was varied from 20 m to 300 m in incre-
ments of 20 m, and the spline smoothing parameter was var-
ied over a range of values chosen to minimize, without over-
smoothing the AOD profile, the effects of spatial and tempo-
ral AOD inhomogeneities that can result in measurements of
increasing AOD with altitude. The final extinction profile is
reported at a vertical spacing of 50 m, where each retrieval
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Figure 5:  March 29, 2006 coincident HSRL (black dashed) and HiGEAR (grey) flight tracks 

with HSRL 523 nm AOD shown along the straight legs (a), 532 nm backscatter ratio time-height 

plot over the same time period with the north and south legs indicated (b), average extinction 

profile from HiGEAR (green, dashed) and HSRL, with HSRL data averaged over the northern 

legs only (black, solid) and also over both the northern and southern legs (blue, dotted) (c). 
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Fig. 5. 29 March 2006 coincident HSRL (black dashed) and HiGEAR (grey) flight tracks with HSRL 523 nm AOD shown along the straight
legs(a), 532 nm backscatter ratio time-height plot over the same time period with the north and south legs indicated(b), average extinction
profile from HiGEAR (green, dashed) and HSRL, with HSRL data averaged over the northern legs only (black, solid) and also over both the
northern and southern legs (blue, dotted)(c).

Table 2. Summary of all extinction and AOD comparisons presented in Sect. 3.

Wavelength Number of Bias difference Bias percent rms difference rms percent Slope InterceptR2

(nm) points difference difference

HiGEAR 532 624 −0.0011 km−1
−2.6% 0.011 km−1 22.6% 1.09 −0.0029 0.94

AATS-14 Extinction 532 219 −0.00029 km−1
−0.96% 0.013 km−1 43.4 % 0.96 −0.0015 0.73

AATS-14 AOD 532 223 −0.0032 −6.5% 0.0079 15.6% 1.01 0.0028 0.98
G-1 Neph+PSAP 532 3642 −0.00032 km−1

−0.27% 0.036 km−1 30.6% 1.13 −0.015 0.92
AERONET 532 10 −0.0045 −1.8% 0.056 22.1% 0.96 0.016 0.64

was interpolated to the pre-defined 50-m vertical grid before
calculating the mean. The HSRL data were binned to the
same 50 m vertical grid to which AATS-14 extinction pro-
files are reported. Figure 8 shows the resulting extinction
and raw (not binned) differential AOD profiles for 532 nm,
all showing excellent agreement. The differential AOD val-
ues are normalized such that the value reported at any altitude
bin presented here represents the optical depth of the aerosols

located between that altitude and the maximum altitude at-
tained by the J-31 in each spiral (∼4.8 km). Normalizing
the differential AOD to zero the maximum altitude of the J-
31 was done to eliminate potential AOD offsets between the
HSRL and the AATS-14 AOD measurements due to aerosols
above the altitude of the B-200 which would not be observed
by the nadir-viewing HSRL instrument.
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Table 3. Summary of dry (RH<65%) extinction comparisons for presented in Sect. 3 for measurements with a relative humidity correction.

Wavelength Number of Bias difference Bias percent rms difference rms percent Slope InterceptR2

(nm) points difference difference

HiGEAR 532 472 −0.0044 km−1
−1.5% 0.0080 km−1 26.8% 1.05 −0.0011 0.88

G-1 Neph+PSAP 532 3465 0.0031 km−1 2.9% 0.029 km−1 27.7% 1.07 −0.011 0.93

 

 

 

Figure 6:  Vertical profiles of HSRL (black, solid) and HiGEAR (green, dashed) derived 532 nm 

extinction March 10, 2006 (a), March 28, 2006 (b), March 29, 2006 (1
st
 spiral) (c), and March 28, 

2006 (2
nd

 spiral) (d).  The relative humidity vertical profile from the C-130 is shown from each 

case (red, dotted). 

 

 

 

Fig. 6. Vertical profiles of HSRL (black, solid) and HiGEAR
(green, dashed) derived 532 nm extinction 10 March 2006(a), 28
March 2006(b), 29 March 2006 (1st spiral)(c), and 28 March 2006
(2nd spiral)(d). The relative humidity vertical profile from the C-
130 is shown from each case (red, dotted).

Both HSRL and AATS remotely measure the ambient
aerosol so there are no humidification corrections or outlet
cutoff concerns in this comparison. Also, it is important to
note that because both HSRL 532 nm molecular channel and
AATS-14 inherently measure optical depth profiles and de-
rive aerosol extinction in a further processing step (i.e., tak-
ing a derivative of the differential AOD profile) that the dif-
ferential AOD provides a more fundamental product for a
measurement comparison.

Fig. 7. Comparison of 532 nm extinction (black circles) from HSRL
and HiGEAR for all four profiles acquired on three days: 10 March,
28 March, and 29 March 2006. Data points corresponding to rela-
tive humidity less than 65% are indicated with a smaller red circle.
Black and red lines are the bilinear regression for all data and data
with relative humidity less than 65% respectively. The black dashed
line is a one-to-one line.

Figure 9 shows a summary of all coincident HSRL and
AATS-14 532 nm extinction data. The HSRL and AATS-
14 extinctions are in good agreement with a bias difference
of −0.00029 km−1. Table 2 shows the complete regression
statistics. Note that, compared to HiGEAR, the range of ex-
tinction is smaller by almost a factor of two. Consequently,
the inherent uncertainty in both HSRL and AATS-14 ex-
tinction measurements is larger in a relative sense for this
smaller range. The lower correlation compared to HiGEAR
may be due to several factors. First, it is possible that HSRL
and AATS-14 can potentially measure slightly different air
masses (down looking lidar vs. sun photometer-to-sun path).
These spirals all had the solar zenith angle smaller than 40
degrees which could lead to a maximum horizontal sam-
pling offset of 7 km (HSRL sampling at 8.5 km and AATS-
14 viewing the volume from near the surface). Similar to
the HiGEAR comparisons, these measurements can be af-
fected by horizontal gradients. Horizontal gradients were
probably present in the 12 March 2006 case, for which the
AATS-14 AOD nonphysically increases with altitude, proba-
bly due to an artifact of the sampling geometry (i.e., moving
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Fig. 8. Profile comparisons of HSRL (black, solid) and AATS-14 (blue, dashed) aerosol extinction at 532 nm(a, c, e)and differential AOD
at 532 nm(b, d, f). These are from three spirals on 10 March 2006 (a, b), 12 March (c, d) and 15 March 2006 (e, f). On 15 March 2006 the
lower limit is 2.5 km because this spiral was over vertically varying terrain with surface altitudes up to 2.6 km. Note that the HSRL 532 nm
AOD profiles extend closer to the ground than the HSRL extinction because of the extrapolation. Random uncertainty for HSRL 532 nm
extinction is plotted; corresponding AATS extinction uncertainties are described in the text.

into a region of higher aerosol loading on one side of the
spiral). It is difficult to assess any horizontal gradient from
the HSRL observations for this case. The J-31 spiral was
overflown by the B-200 in only one direction, with very lit-
tle gradient (1AOD<0.01) observed. This geometry would
be sensitive to a gradient in aerosol loading on a different
bearing from the J-31 spiral, and, in general, the nadir-only
HSRL data cannot provide information on horizontal gradi-
ents in aerosol or cirrus above the B-200 along the path from
the AATS-14 to the sun. Some of the outlying points in Fig. 9
are possibly due to cloud contamination above the AATS-14.
One example of this was on 15 March 2006 (Fig. 8e, f) where

the AATS-14 AOD data indicate there was significant cloud
screening and only a few points went into the extinction cal-
culation near the surface, causing differences up to 50%.

The error bars in Figs. 8 and 9 are the random uncer-
tainty estimates in the HSRL product. The error bars on
the AATS extinction values for a particular profile were de-
rived by combining, in an rms sense, the standard deviation
of the set of retrieval results with an estimate of the uncer-
tainty (Eq. 5 in Redemann et al., 2003) due to spatial and/or
temporal inhomogeneity of the aerosol field during the ver-
tical profile. These uncertainties were used to weight the bi-
linear regression, which yielded a similar slope (1.05±0.04)
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Fig. 9. Comparison of 532 nm extinction from HSRL and AATS-14
for all three profiles acquired on 10 March, 12 March, and 15 March
2006. Red and black (dashed) lines indicate the bilinear regression
and the one to one line, respectively.

and intercept (−0.001±0.001) as the unweighted regression.
Uncertainty estimates were not available for in-situ measure-
ments so no other weighted regressions were performed.

As mentioned above the differential AOD is a more fun-
damental measurement for both HSRL and AATS-14 which
is presented in Fig. 10. For this dataset the bias difference is
−0.0032 (−6.5%) (HSRL lower). The complete regression
statistics are tabulated in Table 2. The good agreement of the
differential AOD supports the observation that some of the
spread observed in the extinction comparison is likely due to
differences in methods for calculating aerosol extinction and
differences in vertical smoothing and/or resolution related to
doing so.

3.3 G-1 extinction measurements (nephelometer
+ PSAP)

The G-1 did not perform any spirals coincident with the B-
200 so, instead of profile comparisons, extinctions were com-
pared along coincident flight tracks at the altitude of the G-1.
The data were screened for coincidence as defined by a hor-
izontal flight track separation of less than 5 km and a tem-
poral separation of less than 30 min. A total of five flights
contained coincident data meeting this criteria: 3 March, 6
March, 9 March (two flights), and 15 March 2006.

The G-1 nephelometer and PSAP instruments used in this
comparison are described in Sect. 2 above. The scattering
coefficients were corrected to ambient relative humidity with
Eq. (3) (assuming a dry RH of 30%) andγ value of 0.49
due to the fact that all of these measurements were acquired
at altitudes greater than 2 km above sea level. Additionally,
the absorption coefficients are corrected for scattering (Bond

et al., 1999, Eq. 1, Table 4). As mentioned in Sect. 2, the
nephelometer scattering and PSAP absorption were scaled
to 532 nm (assuming an Angstrom coefficient of unity) and
summed to derive extinction.

Figure 11 shows a summary of all coincident HSRL and
G-1 532 nm extinction data where the HSRL extinctions
were averaged over four vertical sampling bins (a total of
120 m) centered on the G-1 altitude. The HSRL and G-
1 extinctions are in good agreement over a wide range of
aerosol extinctions (from∼0 km−1 to 0.4 km−1), which in-
cludes significantly larger values than those observed in the
coincident AATS-14 and HiGEAR observations discussed
above. Even with the large range of extinction values, the
bias difference of HSRL and the G-1 extinction is still low
−0.00032 km−1, or −0.27%, (HSRL lower) with good cor-
relation. The complete set of regression statistics are sum-
marized in Table 2. The spread in the scatter plot is likely
due to horizontal and temporal sampling differences (e.g.,
advection of horizontally varying aerosols over the time lag
between the two measurements as observed in the HiGEAR
case above). In Fig. 11 the red filled circles are points for
which the relative humidity was less than 65%. For cases
with higher than 65% relative humidity more than a 30% en-
hancement was added to the scattering coefficient, computed
from Eq. (3). Neglecting points with RH>65% yields a bias
of 0.0031 km−1 (2.9%, HSRL higher). Table 3 shows the re-
gression results for low relative humidity. The regression was
also performed with the inclusion of relative humidity be-
tween 65% and 100% to test the humidity correction, where
the bias difference, rms difference, and slope were found to
vary within the range the values reported in Tables 2 and 3.
This implies that the bias difference was overall small and
slightly positive and the slope was overall slightly larger than
unity for all relative humidities. This discrepancy could be
due to many factors, though it is possibly due to the appli-
cation of a single parameterization for the relative humidity
correction applied to all of the G-1 data, which was over sev-
eral days and many air masses. Still, the results show that the
extinction from HSRL and the in-situ measurements on the
G-1 are in very good agreement.

3.4 AERONET

The AERONET (Holben et al., 1998) deployed automatic
tracking sun and sky scanning radiometers to several stations
in and around Mexico City: Orizaba (19.106 N, 97.324 W),
Mexico City (19.334 N, 99.182 W), Tamihua (21.261 N,
97.442 W), and Veracruz (19.14 N, 96.187 W), and heavily
instrumented sites designated as T0 at the Instituto Mexi-
cano del Petŕoleo (19.490 N, 99.148 W), T1 at the Univer-
sidad Tecnoĺogia del Tećamac (19.703 N, 98.982 W), and T2
at the Rancho La Bisnaga (20.010 N, 98.909 W). At the time
of this work level 2 AERONET data existed for only Mexico
City, T0, T1, and Tamihua so Level 1.5 data were used for
Orizaba and T2. The HSRL optical depths were compared
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Fig. 10.Comparison of 532 nm AOD from HSRL and AATS-14 for
all three profiles acquired on 10 March, 12 March, and 15 March
2006 with the bilinear regression in red and the one to one line in
black (dashed).

to the AERONET 500 nm optical depths, scaled to 532 nm
with wavelength using the AERONET derived 500 nm to
870 nm angstrom coefficient. Using the criterion of limiting
temporal coincidence to within a one hour window between
the HSRL and AERONET optical depth measurements and a
10 km spatial distance between the site and the HSRL flight
track, 10 coincident observations were found. All AOD mea-
surements falling within the spatial/temporal window were
averaged and are summarized in Fig. 12.

The 532 nm optical depth bias difference was−0.005
(HSRL lower), or−1.8%, and the complete regression re-
sults are shown in Table 2. Some of this discrepancy may be
accounted for by any aerosol optical depth above the sam-
pling range of the airborne HSRL, which is typically from
the surface to 6.5 km above mean sea level for the extinc-
tion and AOD measurement (the aircraft altitude is typically
∼9 km and the nearest 2.5 km of the profile are conserva-
tively excluded from the extinction and optical depth calcu-
lation due to incomplete transmitter-receiver overlap). The
stratospheric optical depth is estimated to be 0.005 for mid-
latitudes in the Northern Hemisphere (Jäger, 2005), however
this does not account for aerosol between the tropopause and
the HSRL measurement. In order to estimate the amount of
AOD above HSRL’s measurement all of the AATS-14 data
were examined for optical depths at altitudes greater than
6 km. Three dates were found to meet these criteria: 6, 15,
19 March 2006, with the average J-31 altitude of 6.3 km. The
average 532 nm optical depth above 6.3 km as determined
from the AATS-14 measurements was 0.011±0.002, which
is larger than the 0.005 bias between the near-coincident
AERONET and HSRL AOD measurements. This discrep-
ancy is likely due to small fluctuations of AOD in the upper

Fig. 11. A comparison of all coincident HSRL and G1 extinction
data (black circles) within 5 km and±30 min. The red filled smaller
circles indicate data points with relative humidity less than 65%.
Black and red lines indicate the bilinear fit of the data with all points
considered and with only points with associated relative humidity
less than 65%, respectively.

troposphere as well as the relatively few data points in both
the HSRL/AERONET comparison and the estimation of op-
tical depth above HSRL using the AATS-14 data. Another
potential source of error in the HSRL AOD is from the sur-
face to 150 m above the surface extrapolation to avoid ground
contamination of the HSRL signal. This extrapolation could
result in small AOD errors for cases where there is a strong
gradient in aerosol near the surface.

Differences on the order of 0.005 can easily be accounted
for by the aerosols above HSRL or near the ground and
Ferrare et al. (2006) found similar biases with a ground based
Raman lidar and sunphotometer measurements. More data
points are required to make any statistical statements about
the AOD comparison; this analysis will be done in the future
using data from numerous HSRL airborne campaigns con-
ducted after MILAGRO. While more data would be useful,
we note that the near-coincident HSRL-AERONET observa-
tions from MILAGRO are within the accuracy range compar-
ison of AATS-14 to ground based sun photometer measure-
ments of∼5% in a recent field study.

3.5 Discussion of HSRL validation and comparison
with previous studies

The HSRL 532 nm aerosol extinction profiles are, generally,
in excellent agreement with three separate measurements:
AATS-14, HiGEAR, and the extinction measurements from
the G-1. Schmid et al. (2006) found in a comparison of ten li-
dars that there was often little bias between lidar extinctions
and AATS-14 at 532 nm, though when a bias was present
it was positive, while our study found a small negative bias
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Fig. 12. Comparison of mean 532 nm AOD from HSRL and
AERONET (all stations) using 1 h and 10 km as the criteria for co-
incidence. The error bars represent the standard deviation of the
data points falling within the coincidence criteria frame. The black
dashed line is the one to one line and the red line is the bilinear
regression.

of −0.00029 km−1 (−0.96%). It should be noted that in
the Schmid et al. (2006) study, of the ten lidar comparisons
presented, eight were against elastic lidars which cannot di-
rectly measure aerosol extinction and the two Raman lidars
comparisons were at 355 nm; the subject of this paper is the
first comparison between AATS-14 and a lidar measuring the
aerosol extinction coefficient at 532 nm.

Bias differences in previous studies found that lidars gen-
erally yield larger extinction measurements than in-situ tech-
niques. We found the HSRL extinctions compared to two
in-situ techniques to have a small negative (HSRL lower)
bias. Bias difference between HSRL and the in-situ tech-
niques can be due to sampling differences due to gradients,
inlet sampling cutoff causing the in-situ to miss some coarse
mode, or the humidity correction to aerosol scattering. The
inlet sampling cutoff would result in a positive bias, so it was
not likely a factor in this study. For the in-situ measurements
onboard the C-130 (HiGEAR), we found little difference in
bias and regression slope when removing high relative hu-
midity points to test the RH correction applied to the dataset.
Removing the high humidity data from the G-1 in-situ com-
parison led to slopes slightly smaller (but larger than unity)
and larger bias values, indicating that the simple humidity
correction used on the G-1 scattering may not be applicable
in all situations.

We note that the extinction differences in the comparisons
presented in this study are approximately consistent with the
typical differences of 15–20% between state-of-the-art in-
struments in measuring ambient aerosol extinction at visible
wavelengths (Schmid, et al., 2006). The differential and col-

umn aerosol optical depth comparison presented here is also
a direct validation of the HSRL AOD products. The HSRL
column 532 nm AOD values are 0.015 lower than AERONET
which is likely due to AOD above the region where HSRL
measurement are retrieved from the aircraft (∼6 km).

4 Summary

We have presented NASA LaRC airborne HSRL measure-
ments of aerosol backscatter, extinction, and depolarization
at two wavelengths (532 nm and 1064 nm) and aerosol op-
tical depth at 532 nm acquired during the MILAGRO field
campaign. The measurements from the 9 March flight were
shown to illustrate the value of the data in providing ver-
tical context for the in situ measurements acquired on the
DOE G-1 aircraft and inferring aerosol type. Similarly, the
data from the 29 March flight were shown to provide in-
formation on vertical and horizontal aerosol gradients useful
for interpretation of the in situ aerosol data acquired on the
NSF/NCAR C-130. The MILAGRO campaign also provided
an excellent first opportunity to validate the HSRL extinction
measurements. Coordinated flights with the NASA J-31 and
NSF/NCAR C-130 allowed us to compare eight vertical pro-
files of extinction derived from instrumentation employing
vastly different techniques to the HSRL extinction profiles.
The HSRL 532 nm extinction profile measurements were in
excellent agreement (differences less than 0.001 km−1) with
the AATS-14 and HiGEAR instruments, proving the accu-
racy of the HSRL technique, and the LaRC HSRL instrument
in particular, for measuring aerosol extinction. Overall, the
extinction and AOD bias differences were less than 6% at
532 nm and are summarized in Tables 2 and 3.
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Jäger, H.: Long-term record of lidar observations of the strato-
spheric aerosol layer at Garmisch-Partenkirchen, J. Geophys.
Res., 110, D08106, doi:10.1029/2004JD005506, 2005.

Kasten, F.: Visibility in the prephase of condensation, Tellus, 21,
631–635, 1969.

Liu, Z., Hunt, W., Vaughan, M., Hostetler, C., McGill, M., Powell,
K., Winker, D., and Hu, Y.: Estimating random errors due to shot
noise in backscatter lidar observations, Appl. Optics, 45, 4437–
4447, 2006.

Livingston, J. M., Redemann, J., Russell, P. B., Torres, O., Vei-
helmann, B., Veefkind, P., Braak, R., Smirnov, A., Remer, L.,
Bergstrom, R. W., Coddington, O., Schmidt, K. S., Pilewskie,
P., Johnson, R., and Zhang, Q.: Comparison of aerosol op-
tical depths from the Ozone Monitoring Instrument (OMI) on
Aura with results from airborne sunphotometry, other space

and ground measurements during MILAGRO/INTEX-B, Atmos.
Chem. Phys. Discuss., 9, 9961–10013, 2009,
http://www.atmos-chem-phys-discuss.net/9/9961/2009/.

McGill, M. J., Hlavka, D. L., Hart, W. D., Welton, E. J., and Camp-
bell J. R.: Airborne lidar measurements of aerosol optical prop-
erties during SAFARI-2000, J. Geophys. Res., 108(D13), 8493,
doi:10.1029/2002JD002370, 2003.

McNaughton, C. S., Clarke, A. D., Kapustin, V., Shinozuka, Y.,
Howell, S. G., Anderson, B. E., Winstead, E., Dibb, J., Scheuer,
E., Cohen, R. C., Wooldridge, P., Perring, A., Huey, L. G., Kim,
S., Jimenez, J. L., Dunlea, E. J., DeCarlo, P. F., Wennberg, P.
O., Crounse, J. D., Weinheimer, A. J., and Flocke, F.: Obser-
vations of heterogeneous reactions between Asian pollution and
mineral dust over the Eastern North Pacific during INTEX-B, At-
mos. Chem. Phys. Discuss., 9, 8469–8539, 2009,
http://www.atmos-chem-phys-discuss.net/9/8469/2009/.

Molina, L. T., Madronich, S., Gaffney, J., et al.: An Overview
of MILAGRO 2006 Campaign: Mexico City Emissions and its
Transport and Transformation, Atmos. Chem. Phys. Discuss., in
preparation, 2009.

Piironen, P. and Eloranta, E. W.: Demonstration of a high-spectral-
resolution lidar based on an iodine absorption filter, Opt. Lett.,
19, 234–236, 1994.

Redemann, J., Masonis, S. J., Schmid, B., Anderson, T. L., Rus-
sell, P. B., Livingston, J. M., Dubovik, O., and Clarke, A. D.:
Clear-column closure studies of aerosols and water vapor aboard
the NCAR C-130 during ACE-Asia, 2001, J. Geophys. Res.,
108(D23), 8655, doi:10.1029/2003JD003442, 2003.

Russell, P. B., Livingston, J. M., Redemann, J., Schmid, B.,
Ramirez, S., Eilers, S. A., Kahn, R., Chu, A., Remer, L.,
Quinn, P. K., Rood, M. J., and Wang, W.: Multi-grid-
cell validation of satellite aerosol property retrievals in IN-
TEX/ITCT/ICARTT 2004, J. Geophys. Res., 112, D12S09,
doi:10.1029/2006JD007606, 2007.

Satheesh, S. K.: Letter to the Editor: Aerosol radiative forcing over
land: effect of surface and cloud reflection, Ann. Geophys., 20,
2105–2109, 2002,http://www.ann-geophys.net/20/2105/2002/.

Schmid, B., Hegg, D. A., Wang, J., Bates, D., Redemann, J., Rus-
sell, P. B., Livingston, J. M., Jonsson, H. H., Welton, E. J., Se-
infeld, J. H., Flagan, R. C., Covert, D. S., Dubovik, O., and Jef-
ferson, A.: Column closure studies of lower tropospheric aerosol
and water vapor during ACE-Asia using airborne Sun photome-
ter and airborne in situ and ship-based lidar measurements, J.
Geophys. Res., 108(D23), 8656, doi:10.1029/2002JD003361,
2003.

Schmid, B., Ferrare, R., Flynn, C., Elleman, R., Covert, D., Strawa,
A., Welton, E., Turner, D., Jonsson, H., Redemann, J., Eil-
ers, J., Ricci, K., Hallar, A. G., Clayton, M., Michalsky, J.,
Smirnov, A., Holben, B., and Barnard, J.: How well do state-of-
the-art techniques measuring the vertical profile of tropospheric
aerosol extinction compare?, J. Geophys. Res., 111, D05S07,
doi:10.1029/2005JD005837, 2006.

Sprent, P. and Dolby, G.: The geometric mean functional relation-
ship, Biometrics, 36, 547–550, 1980.

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Av-
eryt, K. B., Tignor, M., and Miller, H. L. (Eds.): Climate Change
2007: The Physical Science Basis. Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmen-
tal Panel on Climate Change (IPCC, 2007) Cambridge University

www.atmos-chem-phys.net/9/4811/2009/ Atmos. Chem. Phys., 9, 4811–4826, 2009

http://www.atmos-chem-phys.net/7/2233/2007/
http://www.atmos-chem-phys-discuss.net/9/9961/2009/
http://www.atmos-chem-phys-discuss.net/9/8469/2009/
http://www.ann-geophys.net/20/2105/2002/


4826 R. R. Rogers et al.: NASA LaRC airborne high spectral resolution lidar aerosol measurements

Press, Cambridge, United Kingdom and New York, NY, USA,
2007.

Sugimoto, N. and Lee, C. H.: Characteristics of dust aerosols
inferred from lidar depolarization measurements at two wave-
lengths, Appl. Optics, 45, 7468–7474, 2006.

Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., and Gleason,
J.: Derivation of aerosol properties from satellite measurements
of backscattered ultraviolet radiation: Theoretical basis, J. Geo-
phys. Res., 103(D14), 17099–17110, 1998.

Virkkula, A., Ahlquist, N. C., Covert, D. S., Arnott, W. P., Sheri-
dan, P. J., Quinn, P. K., and Coffman, D. J.: Modification,
Calibration and a Field Test of an Instrument for Measuring
Light Absorption by Particles, Aerosol Sci. Technol., 39, 68–83,
doi:10.1080/027868290901963, 2005.

Atmos. Chem. Phys., 9, 4811–4826, 2009 www.atmos-chem-phys.net/9/4811/2009/




